RICH Reconstruction

Fermilab Meeting, Feb 2003 Sin Man Seun (Sharon)

- Reconstruction Algorithms & Code
- Event Display
- Raw Likelihood Ratio Distribution
- Likelihood Ratio Cut
- Efficiency for Particle Identification
- TOF Study
- Next Step

Reconstruction Algorithms

WA89: maximum likelihood method

- Given ring center & momentum \rightarrow predict rings radii for mass hypotheses π , K and p
- Assume gaussian distribution of the measured radii, the signal is

$$S_{j}(\vec{x}^{(i)}) = \frac{n_{j}}{2\pi R_{j}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(r^{(i)}-R_{j})^{2}}{2\sigma^{2}}}$$

Probability to observe exactly m PMT's

$$P(m \text{ PMT's}) = \frac{e^{-p_j} p_j^m}{m!}$$

where $p_j = s_j + b$. s_j and b are the expected number of signal and background PMT's respectively.

Reconstruction Algorithms

– Likelihood function for hypothesis j (π , K and p)

$$L_{j} = P(m) \times \prod_{i=1}^{m} \frac{S_{j}(\vec{x}^{(i)}) + B(\vec{x}^{(i)})}{S_{j} + b}$$

$$L_{j} = \frac{e^{-b}}{m!} e^{-s_{j}} \prod_{i=1}^{m} \left(\frac{n_{j}}{2\pi R_{j}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(r^{(i)} - R_{j}\right)^{2}}{2\sigma^{2}}} + B(\vec{x}^{(i)}) \right)$$

Likelihood ratio

$$R_{ij} = \frac{L_i}{L_j}$$

3 different likelihood ratios:

$$R_{\pi K} = \frac{L_{\pi}}{L_{K}}, \quad R_{\pi p} = \frac{L_{\pi}}{L_{p}}, \quad R_{Kp} = \frac{L_{K}}{L_{p}}$$

Reconstruction Code Flow Chart

Reconstruction Code

Current Code

- Get track info
 - MC true momentum of a track is used and will be replaced once track reconstruction is in place
 - Only tracks that pass through both upstream & downstream DCs are considered
 - Constant index of refraction is used to calculate expected ring radii for different particle hypotheses

Analysis

- Signal region: $(R_{smallest}-3cm)$ to $(R_{largest}+3cm)$
- Background region: $(R_{smallest} + 3cm)$ to $(R_{largest} + 8cm)$
- Assume space resolution $\sigma = 0.55$ cm
- Assume n_e =100 (94 digits for proton ring @ 40GeV) and n_i = n_e (R_i/R_e)² \rightarrow PMT efficiency is not taken into account

Event Display

Single Event Display (Event 622)

$Log(R_{\pi K})$ Raw Distribution for Different Momentum Ranges

Likelihood ratio cut value changes as a function of momentum Probably due to constant expected PMT's assumption

$Log(R_{\pi p})$ Raw Distribution for Different Momentum Ranges

Likelihood ratio cut value changes as a function of momentum Probably due to constant expected PMT's assumption

$Log(R_{Kp})$ Raw Distribution for Different Momentum Ranges

Likelihood ratio cut value changes as a function of momentum Probably due to constant expected PMT's assumption

Likelihood Ratio Cut $Log(R_{\pi K})$ vs. Momentum

 $Log(R_{\pi K})$ as a function of momentum

Likelihood Ratio Cut $Log(R_{\pi p})$ vs. Momentum

 $\text{Log}\left(\mathbf{R}_{\mathbf{TP}}\right)$ as a function of momentum

Likelihood Ratio Cut $Log(R_{Kp})$ vs. Momentum

 $\text{Log}(R_{K,p})$ as a function of momentum

Efficiency for Identifying π

$$Efficiency = \frac{\#\pi \text{ identified}}{\#\pi \text{ from MC}}$$

Efficiency for Identifying K

$$Efficiency = \frac{\# K \text{ identified}}{\# K \text{ from MC}}$$

Efficiency for Identifying p

$$Efficiency = \frac{\# p \text{ identified}}{\# p \text{ from MC}}$$

RICH Data Stream

RICHRing Class

- PMT's
- Ring center
- Momentum
- Reconstructed particle ID
- Expected radii of all hypotheses (e, π , K, p)
- Likelihood of all hypotheses (e, π , K, p)

TOF Study

	5cm-TOF			1cm-TOF		
	True	Reco	Reco True	True	Reco	Reco True
# e	79	56	71%	72	43	60%
# π	478	338	71%	475	330	70%
# K	40	31	78%	38	29	76%
# p	609	517	85%	620	541	87%

TOF Study: Efficiency for Identifying p

5cm-TOF

Efficiency for identifying p (5cm-TOF)

1cm-TOF

Efficiency for identifying p (1cm-TOF)

Next Step

- RICH reconstruction: almost complete
 - Vary signal & background regions to optimize ring reconstruction
 - Calculate expected number of PMT's
- Get momentum & direction for each track from previous reconstruction stage